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In the frame of long-wavelength Heisenberg model, a simple magnonic device is designed to obtain possibly
transmission stop bands �where the propagation of spin waves is forbidden�. This simple device is composed
of an infinite one-dimensional mono-mode waveguide �the backbone� along which N�N�� side resonators are
grafted at two sites. Contrary to all known systems of this kind, a spectral transmission gap of nonzero width
occurs here even with this simple structure. This is obtained by combining appropriately the zeros of trans-
mission of the side resonators. Sharp resonant states inside the gaps can be achieved without introducing any
defects in the structure. This results from an internal resonance of the structure when such a resonance is
situated in the vicinity of a zero of transmission or placed between two zeros of transmission, the so-called
Fano resonances. A general analytical expression for the transmission coefficient is given for various systems
of this kind within the framework of the Green’s function method. The amplitude, the phase, and the phase
time of the transmission are discussed as a function of frequency and it is shown that the width of the stop
bands is very sensitive to the number of the side resonators. These results should have important consequences
for designing integrated devices such as narrow-frequency optical or microwave filters and high-speed
switches.
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I. INTRODUCTION

Spin systems which have a regular distribution of scatter-
ing centers have been seen to possess a distinct and interest-
ing array of magnonic properties, perhaps most strikingly
frequency band gaps within which magnons cannot propa-
gate through the structure—a so-called magnonic band
gap.1–9 The interest in these band gaps is related to the po-
tential applications of magnon-transport devices and is sup-
ported by the advanced progress in nanofabrication
technology.10 Two-dimensional �2D� and three-dimensional
�3D� composite systems constituted by periodic inclusions of
at least two magnetic materials in a host matrix can exhibit
an absolute magnonic band gap where the propagation of
spin waves is inhibited in any direction of the space.3,4,6,11–14

These magnonic band-gap materials can have many practical
applications such as spin injection into devices.15 Studies of
lower-dimensional systems such as one-dimensional �1D�
periodic layered media2,16–20 and periodic waveguide sys-
tems with different geometries21–27 are conducted as analogs
of 2D and 3D systems and for applications in their own right.
These structures are attractive since their production is more
feasible and they require only simple analytical and numeri-
cal calculations. On experimental grounds, arrays of very
long ferromagnetic nanowires made of Ni Permalloy and Co
with diameters in the range of 30–500 nm have been
created.28 These are very uniform in cross section with
lengths in the range of 20 �m. The realization of such nano-
wires can reasonably be considered, to an excellent approxi-
mation, as mono-mode waveguides.

In order to provide comprehensive information about
magnetotransport in magnonic band-gap crystals �which is

the analogous to photonic crystals and based on magnetic
materials�, in this paper, we propose a different structure and
focus our study on it. This structure consists of N�N�� side
resonators grafted at two sites on an infinite 1D mono-mode
waveguide. The transmission gaps and Fano-like resonances
have been established through an analysis of the transmis-
sion function �amplitude and phase� obtained within the
framework of the Green’s function method. In a previous
publication,21–23 we reported that the magnonic transmission
spectrum of 1D comb structures exhibits large gaps. These
structures, called star wave guides, are composed of M� dan-
gling side branches �DSBs� periodically grafted at each of
the M equidistant sites on an infinite 1D mono-mode wave-
guide �the backbone�. The gaps originate from the periodic-
ity of the system determined by the distance between two
neighboring sites and from the eigenfrequencies of the DSB
which play the role of resonators. The gap widths also de-
pend on the effect of the pinning field at the ends of the side
branches.23 It is interesting to underline the results of huge
gaps and discrete transmission spectrum due only to the dan-
gling side branches grafted at a single site on the backbone.
Unlike other 1D �e.g., Bragg lattices�, 2D, or 3D magnonic
crystals in which the contrast between the constituents is a
critical parameter for the stop band existence, this star wave-
guide exhibits relatively large forbidden bands even if the
backbone and the resonators are made of the same material.
On the other hand, in Refs. 24–27 we have presented a net-
works called a serial loop structure �SLS�. These SLS was
made of symmetric �asymmetric� loops pasted together with
segments of finite length; the loops play the role of resona-
tors. Such structure exhibits new features, in comparison
with the star waveguide. We emphasize the interesting result
of transmission zeros in the case of asymmetric loop
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structure.26 These transmission zeros may lead to a phase
drop of � and therefore negative phase time.29

Recently magnonic band-gap crystals, in which propaga-
tion of spin waves �magnons� is forbidden, have attracted
much attention. This is related to a number of advantages
that magnonic crystals have in comparison with photonic
crystals. The wavelength of a spin wave and, hence, the
properties of such crystals depend on the external magnetic
field and can be controlled by this field. The wavelength of
propagating spin waves for a wide class of ferromagnetic
materials in the microwave range is on the order of tens or
even hundreds of micrometers. The phase and group veloci-
ties of spin waves are also functions of the structure size and
the applied external field and may vary over a wide range.1

In addition to the band gaps, a great interest has been paid to
the so-called Fano resonances that may be introduced in such
gaps. Some analytical models, in phononic band-gap crys-
tals, have been proposed to explain the origin and the behav-
ior of such resonances.30–33 These resonances were first theo-
retically described by Fano34 when he studied the inelastic
auto ionizing resonances in atoms. The asymmetry �Fano
profile� was explained as the result of the interference be-
tween the discrete resonances with the smooth continuum
background in which the former is embedded. The symmet-
ric and asymmetric line shapes have been also reported in the
electronic transport in mesoscopic systems using the
Aharonov-Bohm systems.35–38 Mainly, the subject of these
studies was to use these interferometric systems to show the
conditions for the existence and the collapse of Fano reso-
nances as a function of the applied current-voltage and mag-
netic flux. These studies are also related to the investigation
of the electronic states of quantum dots35,36 as well as to the
understanding29,39 of the transmission phase jumps by � be-
tween two adjacent resonances in relation with the experi-
ments of Yacoby et al.40 The analogy between scattering
properties of electrons, phonons, and magnons suggests that
this type of feature can also appear in magnonic systems.41

The motivation behind the work presented in this paper is
to introduce a design of a simple magnonic filter consisting
of N�N�� dangling side branches, which play the role of reso-
nators, grafted at two sites on an infinite 1D mono-mode
waveguide �see the inset of Figs. 1�a�, 1�c�, and 1�e��. We
show analytically and numerically that this simple structure
can exhibit transmission gaps �their width depend on the
number of dangling resonators� and Fano-like resonances. In
particular, we show that the transmission amplitude through
such a system can be written following the Fano-like shape
around these resonances. In addition, we give an explicit
expression of the Fano parameter34 as well as the position
and the width of the Fano resonances34 as a function of the
geometrical parameters of the system.

This paper is organized as follows. In Sec. II, we give a
brief review of the theoretical model used in this work as
well as the analytical results of the structure depicted above.
These results are necessary for an analytical understanding of
the phenomenon obtained for the structure proposed in this
work. Section III is devoted to the transmission gaps and
Fano resonances. The conclusions are presented in Sec. IV.

II. THEORETICAL DISCUSSION

We consider an infinite �one dimensional� ferromagnetic
medium i. The Fourier-transformed Green’s function be-
tween two points x and x� of this infinite waveguide can be
expressed as21,42

Gi�x,x�� = −
e−�i�x−x��

2Fi
, �1�

where �i= j���−�iH0� /Di�= j�i�, j=�−1, Fi=Di��i /�iM0i,
and Di�= �2Ja2M0i� / ��i�

2�. �, M0i, H0, J, and �i stand, re-
spectively, for the angular frequency of the spin wave, the
spontaneous magnetization, the static external field, the ex-
change interaction between neighboring magnetic sites in the
simple-cubic lattice of lattice parameter a constituting the
ferromagnetic medium, and the gyromagnetic ratio. Before
addressing the problem of the simple structure presented in
this work �see the inset of Figs. 1�a�, 1�c�, and 1�e��, it is
helpful to know the surface elements of its elementary con-
stituents, namely, the Green’s function of a finite segment of
length di , i=1,2 ,3 and of a semi-infinite medium �lead�. The
finite segment of length d2 is bounded by two free surfaces
located at x=0 and x=d2. These surface elements can be
written in the form of a �2�2� matrix g2�MM� within the
interface space M = �0, +d2�. The inverse of this matrix takes
the following form:43

g2
−1�MM� =	

− F2C2

S2�

F2

S2�

F2

S2�

− F2C2

S2�

 , �2�

where C2=cos��2�d2� and S2�= j sin��2�d2�= jS2. The inverse
of the surface Green’s functions of the dangling resonators
grafted at the sites �0� and �d2� is given by g1

−1�0,0�
=−NF1C1 /S1� and g3

−1�d2 ,d2�=−N�F3C3 /S3�, where Ci
=cos��i�di�, Si�= j sin��i�di�= jSi, i=1,3. N and N� are the
number of side branches on both sides of the finite segment
of length d2. The inverse of the surface Green’s functions
of the two semi-infinite ferromagnetic leads surrounding the
whole structure is given by gs

−1�0,0�=gs
−1�d2 ,d2�=−Fs. In

what follows, we assume that the semi-infinite leads and
mediums �segments� 1, 2, and 3 are constituted of the
same material �i.e., F1=F2=F3=Fs=F=D�� /�M0,
D�= �2Ja2M0� / ���2�, and �= j���−�H0� /D�= j���. We re-
port on results of calculated transmission coefficients and
phase or phase time as a function of frequency. Using the
Green’s function method,43 the expression giving the inverse
of the Green’s function of the whole system �depicted at the
inset of Fig. 1�e� for N=N�=2� can be obtained from a linear
superposition of the above inverse Green’s functions of the
constituent, namely,

g−1�MM� = F	
− C2

S2�
−

NS1�

C1
− 1

1

S2�

1

S2�

− C2

S2�
−

N�S3�

C3
− 1
 .

�3�
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The transmission function is given by43 t=−2Fg�0,d2� or
equivalently

t =
2C1C3

	1 + j	2
, �4�

where

	1 = 2C1C2C3 − S2�NS1C3 + N�C1S3� , �5�

and

	2 = 2C1S2C3 + N�C1C2S3 + NS1�C2C3 − N�S2S3� . �6�

From the expression of t �Eq. �4��, one can deduce the trans-
mission amplitude

T =
4C1

2C3
2

	1
2 + 	2

2 , �7�

as well as the phase

FIG. 1. �a� Transmission coefficient vs the reduced frequency 
1 for the structure depicted in the inset. For convenience H̃� is considered
to be 1. �c� Transmission coefficient vs the reduced frequency 
2 for the structure depicted in the inset with d1=d3=0.5d2 and N=N�=1. �e�
The same as in �c� but for the structure depicted in the inset of �e� �N=N�=2�. �b�, �d�, and �f� are, respectively, the same as �a�, �c�, and �e�
but for the variation of the phase.
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� = arctan�	2/	1� + ���C1C3� , �8�

where � means the Heaviside function. From Eqs. �4� and
�7� one can notice that the transmission zeros are induced by
the side branches �i.e., C1=0 or C3=0�. When the expression
C1C3 changes sign at some frequencies denoted by �n, then
the phase �Eq. �8�� exhibits a jump of �.

Another interesting quantity is the first derivative of �
with respect to the pulsation � which is related to the delay
time taken by the magnons to traverse the structure. This
quantity, called phase time, is defined by44,45

� =
d�

d�
�9�

and can be written as

� =
d

d�
arctan�	2/	1� + ��

n

sgn� d

d�
�C1C3��=�n

��� − �n� ,

�10�

where sgn means the sign function. Furthermore, the density
of states �DOS� of the present composite system from which
we have subtracted the DOS of the semi-infinite leads is
given by45

�n��� =
1

�

d

d�
arctan�	2/	1� . �11�

Because of the second term on the right-hand side of Eq.
�10�, one can deduce that ����n��� as � �Eq. �10�� may
exhibit � functions at the transmission zeros that do not exist
in the variation of the DOS �Eq. �11��. However, if the sys-
tem does not exhibit transmission zeros, then ��C1C3�=0
and �=��n���. It should be pointed out that the validity of
our results is subject to the requirement that the cross section
of the waveguide being negligible compared to their length
and to the propagation wavelength. The assumption of
mono-mode propagation is then satisfied.

III. TRANSMISSION GAPS AND FANO RESONANCES

Before addressing the problem of the whole structure de-
scribed above, let us first recall briefly the results of a par-
ticular case necessary for the understanding of the spin-wave
propagation in the structures shown at the inset of Figs. 1�c�
and 1�e�, namely, if d2=0, N=1 and N�=0, we obtain the
transmission function of a simple structure consisting of one
resonator grafted on an infinite guide �see the inset of Fig.
1�a��: t=C1 / �C1+ jS1 /2�. This expression enables us to de-
duce the transmission coefficient T= �t�2=4C1

2 / �4C1
2+S1

2� and
the phase �=���C1�−arctan�S1 /2C1�. Let us mention that
the transmission amplitude of a quantum waveguide with
one resonator has been previously discussed in numerous
publications.46 We can see that the transmission coefficient
equals zero when C1=0, i.e., ��d1= �l�+0.5��, where l� is a
positive integer. The corresponding frequencies will be �g

=�H0+D���l�+0.5�� /d1�2 or symbolically 
g= H̃�+ ��l�
+0.5���2, where 
g=�gd1

2 /D� is a reduced frequency and

H̃�=�H0d1
2 /D�. From these results one can notice that for

this composite system there exist an infinite set of forbidden
frequencies 
g corresponding to the eigenmodes of the
grafted finite branch. This grafted branch behaves as a reso-
nator and this simple composite system filters out the modes

g. This phenomenon is related to the resonances associated
with the finite additional path offered to the spin-wave
propagation. The variation of T versus the reduced frequency

1=�d1

2 /D� is reported in Fig. 1�a�. T is equal to zero when
��d1 is an odd multiple of � /2 and reaches its maximum
value of 1 when ��d1 is a multiple of �. The variation in the
phase versus the reduced frequency �Fig. 1�b�� shows an
abrupt change in � at the transmission zeros and therefore
the corresponding phase time is different from the DOS as
mentioned above �Eqs. �10� and �11��.

For the structures shown at the insets of Figs. 1�c� and
1�e�, Eq. �4� clearly shows that the transmission zeros are
due only to the dangling resonators �i.e., when C1=0 or C3
=0�. Figure 1�c� gives the transmission coefficient in pres-
ence of two identical dangling resonators �i.e., N=N�=1 and
d1=d3=0.5d2�. One can notice that the transmission coeffi-
cient presents well-defined dips induced by the grafted
branches. This dip transform into large transmission gap
when the number of branches increase as it is illustrated
in Fig. 1�e� for N=N�=2. It is worth mentioning that
because of the existence of two resonators, one can expect
two phase drops of � �i.e., 2�� at the transmission zeros

given by C1=C3=0 �i.e., 
2=�d2
2 /D�= H̃+ ��l�+0.5���2 , H̃

=�H0d2
2 /D� , l�=0,1 ,2 , . . .�. However, one can see in Figs.

1�d� and 1�f� that the phase presents only a phase drop of �.
This is due to existence of a resonant state with zero width at
these values of 
2 which induce a phase jump of �; these
resonances collapse when d1=d3 is taken exactly equal to
0.5d2. To enlarge these resonances, we have to take d1 and d3

slightly different from 0.5d2. Indeed, at 
2= H̃+ �l��2 , l
=1,2 , . . . and for N=N�, the expression of the transmission
function �Eq. �4�� becomes

t = �
2C1C3

2C1C3 + jN sin����d1 + d3��
. �12�

In particular, if ���d1+d3�=m�, ��d1� �m1+0.5��, and
��d3� �m2+0.5�� �m, m1, and m2 are integers�, one obtains
a resonance that reaches unity �i.e., T=1�. An example cor-
responding to this situation is given in Fig. 2�a� where N
=N�=1, d1=0.46d2, and d3=0.54d2 �with d1+d3=d2�. One

can notice that the resonance at 
2= H̃+�2 is squeezed be-
tween two zeros �indicated by solid circles on the abscissa of
Fig. 2�a�� induced by the dangling resonators as it is also
illustrated in the plot describing the variation of the phase
�Fig. 2�c��. The width of this resonance increases as far as d1
and d3 deviate from 0.5d2 �see below�. In the particular case
where ��d1= �m1+0.5�� and ��d3= �m2+0.5��, the numera-
tor and denominator of t �Eq. �12�� vanishes altogether. In
this case, the resonance as well as the two zeros induced by
the resonators fall at the same position, then the resonance
collapses, the transmission coefficient vanishes and the phase
drops by � as it was shown in Figs. 1�d� and 1�f�.

The resonance in Fig. 2�a� shows the same characteristics
as a Fano resonance but with two zeros of transmission
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around the resonance instead of one as it is usually the
case.34,35 Indeed, one can obtain an approximate analytical
expression for the transmission function �Eq. �4�� in the vi-
cinity of the resonance. A Taylor expansion around ��d2
=� �i.e., ��d2=�+� with � /��1 and N=N�� enables us to
obtain

t =
− ���

2N�2 + ��� − j��2�N + N2� + ����N2 − 2�/2�
. �13�

where �=2�+��1+2� /��, ��=−2�+��1−2� /��, and � is
the detuning of d1 and d3 from 0.5d2 �i.e., �=��0.5
−d1 /d2�=��−0.5+d3 /d2��. Using Eq. �13�, one can show
that the transmission coefficient T can be written �following
the Fano line shape34,35� in the form

T = A
�� + q1��2�� − q2��2

�2 + �2 , �14�

where A= �1−4�2 /�2�2 /4�N�N+1�+�2�2−N2��2.

� = 2�2/�N�N + 1� + �2�2 − N2�� �15�

characterizes the width of the resonance falling at �=0.

q1 = �N�N + 1� + �2�2 − N2��/��1 + 2�/�� �16�

and

q2 = �N�N + 1� + �2�2 − N2��/��1 − 2�/�� �17�

are the coupling parameters; they give qualitatively the inter-
ference between the bound states and the propagating con-
tinuum states.34–36

One can notice that when increasing �, � increases and
q1�q2� decreases. The results of the approximate expression
�Eq. �14�� are shown in Fig. 2�b� by open circles. These
results are in accordance with the exact ones �solid lines� and
clearly show that the resonance is of Fano type with q1
�14.85 and q2�17.43 and width 2��0.03. The commonly
studied Fano resonances are asymmetric because of the pres-
ence of only one transmission zero near the resonance �see
below�. In addition, in the electronic counterparts studies, a
perturbation is often introduced to the system in order to
create the resonance state.34–37 However, the above calcula-
tion shows that, without introducing any perturbation in the
structure, one can find a well-defined symmetric Fano reso-
nance with width 2� and coupling parameters q1 and q2 that

FIG. 2. �a� The same as in Fig. 1�c� but the lengths of the resonators are taken such that d1=0.46d2 and d3=0.54d2 and N=N�=1. Solid
circles on the abscissa indicate the positions of the transmission zeros induced by the dangling resonators on both sides of the resonance. �c�
The same as in �a� but for the variation of the phase. �b� and �d� give the approximate results �open circles� around the resonance.
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can be adjusted by tailoring the lengths of the resonators
�i.e., ��. Equation �13� enables us also to deduce an approxi-
mate expression for the phase as

� = − arctan���2�N + N2� + ����N2 − 2�/2�
2N�2 + ���

�
+ ����� + ������ . �18�

This function is plotted by open circles in Fig. 2�d� and
clearly shows two abrupt phase changes in � at �=0 and
��=0 �i.e., �1=−q1� and �2=q2�� in accordance with the
exact results �solid line�.

One can also create an asymmetric Fano resonance by
adjusting the transmission zeros on only one side of the reso-
nance; this can be obtained by considering a structure where
the resonators are supposed to be identical with lengths
slightly different from 0.5d2. This is shown in Fig. 3�a� for
d1=d3=0.46d2 and N=N�=1. Indeed, an analytical Taylor
expansion around ��d2=� enables us to write the transmis-
sion function �Eq. �4�� as

t =
− 2�2

�� − jN��N� + 2� + j���
, �19�

where �=�+0.5��1+2� /�� and � is the detuning of the
lengths of the two resonators from 0.5d2 �i.e., �=��d1 /d2

−0.5��. From the expression of t �Eq. �19��, one can deduce
the following Fano line-shape transmission coefficient:

T =
B

N2 + �2

�� − �R + q��4

�� − �R�2 + �2 �
B

N2

�� − �R + q��4

�� − �R�2 + �2 , �20�

where B= �1+2� /��4 /4�N+1+2� /��2.

q = �N + 1 + 2�/��2/��1 + 2�/�� �21�

is the Fano parameter.

� = 2�2/N2�1 +
1

N
�1 + 2�/��3

�22�

and

�R = − 2�/�N + 1 + 2�/�� �23�

characterize the width and the shift of the resonance, respec-
tively.

One can notice that the resonance shifts slightly from
��d2=� and its width is small as compared to the preceding
case; this is in accordance with the numerical results of Figs.
2�a� and 3�a�. Also q increases when � decreases and tends
to infinity when � vanishes. In this case the resonance falls
at �R=0 and, as expected, its width 2� reduces to zero �see

FIG. 3. �a� The same as in Fig. 2�a� but the resonators are taken to be of identical lengths d1=d3=0.46d2, �c� The same as in �a� but for
the variation of the phase. �b� and �d� give the approximate results �open circles� around the resonance.
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Fig. 1�c��. The results of the approximate expression �Eq.
�20�� are sketched �open circles� in Fig. 3�b� for �
=��d1 /d2−0.5�=−0.04� �i.e., d1 /d2=0.46� and N=N�=1.
These results are in accordance with the exact ones �solid
lines� and clearly show that the resonance is of Fano type
with �q��32 and width 2��0.0089. Concerning the evolu-
tion of the phase of the spin waves in this structure, one can
notice from Eq. �4� that the numerator of the transmission
function t vanishes when C1=C3=0 �or equivalently �=0 in
the approximate result �Eq. �19�� at ��d2= �� /2�d2 /d1 �i.e.,

2=12.66� indicated by a filled circle on the abscissa of Fig.
3�a��. The transmission zeros induced by the two identical
resonators fall at the same frequency; therefore the phase
�Figs. 3�c� and 3�d�� shows a phase drop of 2� at these

frequencies. Indeed, as the phase is defined mod 2�, the 2�
phase change can be observed if we take into account the
absorption in the system.47,48

In order to show the profile of the Fano resonances as a
function of the parameter � �or equivalently d1 /d2�, Fig. 4�a�
gives the characteristic features of the resonances as a func-
tion of the reduced frequency 
2 for d1 /d2 around 0.5 and
for an asymmetric resonance. On can notice that the position
of the resonance decreases as a function of d1 /d2; its asym-
metric Fano profile becomes symmetric and changes sign for
d1 /d2�0.5. In other words, the parameter q responsible for
the asymmetric Fano profile of the resonance diverges and
changes sign around d1 /d2=0.5. The width of the resonance
decreases when d1 /d2 tends to 0.5 and vanishes when d1 /d2

FIG. 4. �a� The same as in Fig.
3�a� but for different values of
d1 /d2. ��b�–�d�� Variations of the

quantities �
R= H̃+ ��+�R�2, H̃
=1� �Eq. �23��, q �Eq. �21��, and �
�Eq. �22�� as a function of d1 /d2

around d1 /d2=0.5.
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is exactly equal 0.5 giving rise to the collapse of the reso-
nance �see Fig. 4�a��. These results are well illustrated by the
plots of the approximate expressions of 
R= H̃+ ��+�R�2

�Fig. 4�b��, q �Fig. 4�c��, and � �Fig. 4�d�� around d1 /d2
=0.5.

Until now we have concentrated our analysis on the
waveguide structure with only one dangling resonator �i.e.,
N=N�=1�. The advantage of such a structure lies in the fa-
cility to be designed experimentally. However, the analytical
approximate expressions �Eqs. �14�–�17� and �20�–�23��
clearly show that the resonances remain of Fano type even
for N=N� different from one. Indeed, Fig. 5 gives the depen-
dence of the transmission rate of both symmetric �Fig. 5�a��
and asymmetric �Fig. 5�b�� Fano resonances for different val-
ues of N=N�. Figure 5�a� displays the transmission ampli-
tude T �Eq. �7�� as a function of 
2 for N=N�=1, 2, and 5;

the other parameters are d1=0.46d2, d3=0.54d2, and H̃=1.
The results of the approximate expression �Eq. �14�� are
sketched by open circles. Even though the resonances fall at
the same frequency 
g�10.88 �i.e., �2�d2=��, their widths
decrease as a function of N and their q parameter increases
giving rise to a symmetric resonance of Breight-Wigner type.
These results are in accordance with the approximate results
of Eqs. �14�–�17�.

In the same way, Fig. 5�b� depicts the effect of variation
in the number N of DSBs on the transmission rate T for a
structure constituted of two identical DSBs with d1=d3
=0.46d2. One can notice that, contrary to the results of Fig.
5�a�, the position of the resonance decreases as a function of
N and tends to 
2�10.88 �i.e., �2�d2=�� when N goes to
infinity �see Eq. �23��. However, the width � of the reso-
nance and its q parameter exhibit similar behavior as in Fig.
5�a� when N increases �see Eqs. �21� and �22��.

In Fig. 6�a�, the transmission rate through the structures
shown at the insets of Fig. 1�c� �N=N�=1, solid line� and
Fig. 1�e� �N=N�=2, dashed line� is redrawn for the sake of
comparison with Fig. 6�b� giving the variation of the DOS.
The lengths of the resonators are chosen such that d1=d3
=0.5d2. A well-defined gap is obtained when the number of
resonators is increased. Such a stop band could be useful in
constructing a rejecting signal device. In Fig. 6�b�, one can
notice that the DOS is strongly reduced in the transmission
gap regions, in particular, when the number of dangling reso-
nators increases. An analysis of the phase time is given in
Fig. 6�c�. This quantity gives information on the time spent
by the magnon inside the structure before its transmission.
Because of the existence of the transmission zeros, the phase
time gives rise to delta functions around the transmission

FIG. 5. �a� The Fano profile of
the symmetric resonance depicted
in Fig. 2�a� for different values of
N=N�. �b� The same as in �a� but
for the asymmetric Fano reso-
nance depicted in Fig. 3�a�.
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zeros at 
2=10.87, 89.3, and 247.74, according to Eq. �10�.
These delta functions have been enlarged by adding a small
imaginary part to the pulsation �, which plays the role of
absorption in the system. Such negative delta peaks have
been shown experimentally in a simple photonic47 and
phononic48 loop waveguide, giving rise to the so-called su-
perluminal or negative group velocity. Figures 6�b� and 6�c�
clearly show, in accordance with Eqs. �10� and �11�, that
except the frequencies lying around the transmission
zeros, the DOS and the phase time exhibit exactly the same
behavior.

IV. SUMMARY AND CONCLUSION

In summary, we have clearly demonstrated that a simple
geometry of a 1D mono-mode waveguide with dangling side
resonators on both sides can pave the way to the derivation
of gaps in the spin-wave propagation. The existence of the
stop bands in the spectrum is attributed to the zeros of trans-
mission associated with the dangling resonators. The width
of the transmission gaps depends on the number of the side
resonators grafted on both sides of the backbone. Besides the
transmission gaps, we have shown the existence of asymmet-
ric and symmetric Fano resonances that may lie near the

FIG. 6. �a� Transmission coef-
ficient vs the reduced frequency

2 for the structures depicted in
Fig. 1�c� �solid line� and Fig. 1�e�
�dashed line�. �b� The same as in
�a� but for the variation of the
density of states �in units of
d2

2 /2D��. �c� The same as in �b�
but for the variation of the phase
time �in units of d2

2 /2D��. The pa-

rameters are d1=d3=0.5d2 and H̃
=1.
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vicinity of a transmission zero or be squeezed between two
transmission zeros. These resonances are obtained by tailor-
ing the lengths of the different branches constituting the
structure and for different values N=N� of the DSBs. A study
of the phase of the transmission function enables us to de-
duce several properties on the spin-wave propagation,
through such structures, such as the phase times and there-
fore the density of states. The phase time calculation are, in
general, the same as the density of states, except for the
frequencies lying around the transmission zeros where the
phase time may exhibit additional negative delta peaks.

The advantage of the simple magnonic waveguide model
presented in this work consists in finding simple analytical
expressions. These expressions enables us to discuss the ex-
istence of Fano resonances as well as the effect of the differ-
ent segment lengths and the number of DSBs on tailoring

these resonances without incorporating a defect in the struc-
ture as it is usually the case in the electronic counterparts
studies.34–37 We believe that this paper brings a new piece of
work in the field of spin-wave transport in 1D waveguide
structures and we hope that it will stimulate an experimental
observation of the transmission gaps and Fano resonances
exhibited by the simple magnonic waveguide described in
this work.
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